Author Affiliations
Abstract
1 School of Physics, Henan Normal University, Xinxiang 453007, China
2 MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin 300457, China
3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
4 Institute of Physics, Henan Academy of Sciences, Zhengzhou 450046, China
5 e-mail: phyzhxd@gmail.com
6 e-mail: tanya@nankai.edu.cn
7 e-mail: zl-zhu@htu.edu.cn
Higher-order exceptional points (EPs), which appear as multifold degeneracies in the spectra of non-Hermitian systems, are garnering extensive attention in various multidisciplinary fields. However, constructing higher-order EPs still remains a challenge due to the strict requirement of the system symmetries. Here we demonstrate that higher-order EPs can be judiciously fabricated in parity–time (PT)-symmetric staggered rhombic lattices by introducing not only on-site gain/loss but also non-Hermitian couplings. Zero-energy flatbands persist and symmetry-protected third-order EPs (EP3s) arise in these systems owing to the non-Hermitian chiral/sublattice symmetry, but distinct phase transitions and propagation dynamics occur. Specifically, the EP3 arises at the Brillouin zone (BZ) boundary in the presence of on-site gain/loss. The single-site excitations display an exponential power increase in the PT-broken phase. Meanwhile, a nearly flatband sustains when a small lattice perturbation is applied. For the lattices with non-Hermitian couplings, however, the EP3 appears at the BZ center. Quite remarkably, our analysis unveils a dynamical delocalization-localization transition for the excitation of the dispersive bands and a quartic power increase beyond the EP3. Our scheme provides a new platform toward the investigation of the higher-order EPs and can be further extended to the study of topological phase transitions or nonlinear processes associated with higher-order EPs.
Photonics Research
2023, 11(2): 225
Author Affiliations
Abstract
1 School of Physics and Key Laboratory of Weak-Light Nonlinear Photonics, Nankai University, Tianjin 300071, China
2 National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
In free-space or in optical fibers, orbital angular momentum (OAM) multiplexing for information transmission has been greatly developed. The light sources used were well coherent communication bands, and the fibers used were customized. Here, we use an 810 nm femtosecond laser to generate optical vortices carrying OAM and then feed them into two kinds of commercial step-index few-mode fibers to explore the transmission characteristics of OAM modes. We also propose a method without multiple-input multiple-output digital signal processing to identify the input OAMs. It is of great guiding significance for high-dimensional quantum information experiments via the OAMs as a degree of freedom, using the light generated by the spontaneous parametric down-conversion as the source and the commercial fibers for information transmission.
060.2310 Fiber optics 050.4865 Optical vortices 080.4865 Optical vortices 
Chinese Optics Letters
2019, 17(12): 120601

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!